## Unusual Kinetically Stable Dialkyltin( $\nu$ ) Oxides; X-Ray Structures of [{SnR<sub>2</sub>( $\mu$ -O)}<sub>2</sub>] and [{SnR<sub>2</sub>(OH)}<sub>2</sub>( $\mu$ -O)] [R = CH(SiMe<sub>3</sub>)<sub>2</sub>]<sup>†</sup>

## Michael A. Edelman, Peter B. Hitchcock, and Michael F. Lappert

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, UK

Treatment of  $Sn_2R_4$  [R = CH(SiMe\_3)\_2] with Me\_3NO in n-C<sub>6</sub>H<sub>14</sub> affords orange [{SnR<sub>2</sub>( $\mu$ -O)}<sub>2</sub>] (1), which with H<sub>2</sub>O in tetrahydrofuran instantly yields colourless [{SnR<sub>2</sub>(OH)}<sub>2</sub>( $\mu$ -O)] (2) which under reflux in PhMe readily reverts to (1); the average Sn–O( $\mu$ ) bond lengths are 1.96(2) for (1) and 1.956(4) for (2), Sn–OH is 2.032(7) Å for (2), and the Sn–O( $\mu$ )–Sn' angles are 97.5(6) for (1) and 125.0(5)° for (2).

Stannoxanes [{SnR'<sub>2</sub>( $\mu$ -O)}<sub>n</sub>] are often insoluble polymers. If R' is a bulky hydrocarbyl group, cyclic, crystalline, lipophilic trimers are established. These, like the unsymmetrical cyclostannoxane [{Sn(MeR")( $\mu$ -O)}<sub>2</sub>{Sn(MeR)( $\mu$ -O)}] (I),<sup>1</sup> have a planar [R' = Bu<sup>t</sup>, (II);<sup>2,3</sup> t-pentyl, (III);<sup>3</sup> or C<sub>6</sub>H<sub>3</sub>Et<sub>2</sub>-2,6, (IV)<sup>4</sup>] or a flattened boat-shaped [R' = C<sub>6</sub>H<sub>2</sub>Me<sub>3</sub>-2,4,6, (V)]<sup>5</sup> (SnO)<sub>3</sub> ring [R = CH(SiMe<sub>3</sub>)<sub>2</sub>, R" = C(SiMe<sub>3</sub>)<sub>3</sub>]. By contrast, four-membered, planar ring structures are found for the colourless, crystalline (i) heavier chalcogen analogues [{SnBu<sup>t</sup><sub>2</sub>( $\mu$ -E)}<sub>2</sub>] (E = S, Se, or Te),<sup>6</sup> and (ii) a mixed *O*-,*S*-compound [(SnR'<sub>2</sub>)<sub>2</sub>( $\mu$ -O)( $\mu$ -S)] [R' = C<sub>6</sub>H<sub>2</sub>Pr<sup>i</sup><sub>3</sub>-2,4,6, (VI)];<sup>7</sup> but [{SnMe<sub>2</sub>( $\mu$ -Te)}<sub>3</sub>] has a puckered (SnTe)<sub>3</sub> skeleton.<sup>8</sup> Each compound was prepared from an appropriate Sn<sup>IV</sup> precursor: SnR'<sub>2</sub>X<sub>2</sub> (X = Cl or Br),<sup>2—6</sup> SnMe(R")Cl<sub>2</sub>,<sup>1</sup> or (SnR'<sub>2</sub>Br)<sub>2</sub>.<sup>7</sup> We now report the first cyclodistannoxane,  $[\{SnR_2(\mu-O)\}_2]$ (1), an orange, crystalline compound. It was obtained by a novel, mild, oxidative route from a Sn<sup>II</sup> precursor, Scheme 1. Such oxidation using Me<sub>3</sub>NO may have some generality for preparing complexes of type  $[\{ML_m(\mu-O)\}_n]$  having M in the oxidation state x from an M<sup>(x-2)</sup> precursor (*e.g.*, M<sup>x</sup> = Tl<sup>III</sup>, Ge<sup>IV</sup>, Pb<sup>IV</sup>, or Zr<sup>IV</sup>). We further find that (i) controlled hydrolysis of (1) yields colourless  $[\{SnR_2(OH)\}_2(\mu-O)]$  (2),‡ the first member of a new class of organotin(IV) hydroxide;

<sup>†</sup> No reprints available.

 $<sup>\</sup>ddagger NMR chemical shifts (\delta) [\delta in ppm, C_6D_6CD_3, 305 K, for <sup>1</sup>H at 80.13 MHz, for <sup>13</sup>C at 90.66 MHz, and for <sup>119</sup>Sn at 134.29 MHz rel. to SnMe<sub>4</sub>)]. For <sup>1</sup>H: (1): 0.21 (s, 36H) and 1.46 (s, 4H); (2): 0.37 (s, 18H), 0.43 (s, 18H), and 1.48 (s, 4H). For <sup>13</sup>C: (1) 3.61 (Me) and 15.82 (CH); (2): 4.03 and 4.35 (Me), 16.32 (CH) [<sup>1</sup>J(<sup>13</sup>C-<sup>119</sup>Sn) 132 Hz, 1/(<sup>13</sup>C-<sup>117</sup>Sn) 138.5 Hz]. For <sup>119</sup>Sn: (1) not observed; (2) 17.45 [<sup>2</sup>J(<sup>119</sup>Sn-<sup>117</sup>Sn) 524 Hz]. The magnetically inequivalent SiMe<sub>3</sub> groups in (2) are a consequence of the prochirality at Sn.$ 

| Sn <sub>2</sub> R <sub>4</sub> - | $[{SnR}_2(\mu-O)]_2] = [[$ | [{SnR <sub>2</sub> (OH)} <sub>2</sub> (µ–O)] |
|----------------------------------|----------------------------|----------------------------------------------|
| ref. 8                           | (1)                        | (2)                                          |
|                                  | orange                     | colourless                                   |

Scheme 1. Synthesis of the cyclodistannoxane (1) and the bis-[dialkyl(hydroxo)tin(v)] oxide (2). Abbreviation:  $R = CH(SiMe_3)_2$ . Reagents and conditions: i, 2Me<sub>3</sub>NO, n-C<sub>6</sub>H<sub>14</sub>, 0 °C, 2 h; ii, 1H<sub>2</sub>O, thf, 20 °C; iii, PhMe, reflux, 5 min. Isolation: (1), 67% (reaction i), by crystallisation from C<sub>6</sub>H<sub>14</sub> at 25 °C; (2), 82%, by crystallisation from PhMe at -30 °C.

| Compound <sup>a</sup> | <sn–o>(Å)</sn–o> | <snosn>(°)</snosn> | Ref.      |
|-----------------------|------------------|--------------------|-----------|
| <b>(I</b> )           | 1.96(1)          | 133(1)             | 1         |
| (ÌI)                  | 1.96(1)          | 133(1)             | 3         |
| (ÌII)                 | 1.96(1)          | 134(1)             | 3         |
| (IV)                  | 1.95(2)          | 136(1)             | 4         |
| (V)                   | 1.97(1)          | 121(1)             | 5         |
| (VI)                  | 2.03(1)          | 101.7(4)           | 7         |
| (1)                   | 1.96(2)          | 97.5(6)            | This work |

and (ii) dehydration of (2) regenerates (1), Scheme 1. Compound (1), unlike (2), surprisingly, was only sparingly soluble in hydrocarbons,  $Et_2O$ , or tetrahydrofuran (thf).

The X-ray structure§ of the unusual cyclodistannoxane (1) is illustrated in Figure 1. It warrants juxtaposition with that of the recently reported colourless, crystalline, lipophilic cyclodisiloxane  $[Si(C_6H_2Me_3-2,4,6)_2(\mu-O)]_2$  (VII), for which SiSi bonding was discussed.<sup>9</sup> Important bond lengths (Å) and angles (°) are given in structures (1a) and (VIIa). Relevant also are (i) the interatomic distances for the tetrahedral Group 14 elements: 2.35 Å (Si) and 2.81 Å (Sn); and (ii) twice the sum of the van der Waals radii for Si (4.20 Å), Sn (4.40 Å), and O (2.80 Å). Further comparative data on Sn<sup>IV</sup>O cyclic systems are in Table 1. The preference for the four-membered ring in (1) cannot be attributed solely to a steric effect as the more hindered crystalline  $[(Sn{CH(But)SiMe_3}_2(\mu-O)]_3$  has been reported to have a configuration similar to that of (V).<sup>10</sup>

§ Crystal data: (a) [{SnR<sub>2</sub>( $\mu$ -O)}<sub>2</sub>] (1): C<sub>28</sub>H<sub>76</sub>O<sub>2</sub>Si<sub>8</sub>Sn<sub>2</sub>, M = 907.0, triclinic, space group  $P\overline{1}$ , a = 9.572(6), b = 11.712(9), c = 12.326(13) Å,  $\alpha = 77.33(7)$ ,  $\beta = 68.27(7)$ ,  $\gamma = 67.19(6)^{\circ}$ , U = 1178 Å<sup>3</sup>, Z = 1,  $D_c = 1.28$  g cm<sup>-3</sup>, F(000) = 472,  $\mu$ (Mo- $K_{\alpha}$ ) = 12.8 cm<sup>-1</sup>,  $\lambda$ (Mo- $K_{\alpha}$ ) = 0.71069 Å. Data were collected on an Enraf-Nonius CAD4 diffractometer at room temperature in the range 2 <  $\theta < 20^{\circ}$ . Of the 2189 unique reflections measured, 1343 with  $I > \sigma(I)$  were used in the refinement, giving R = 0.082,  $R_w = 0.089$ . The molecule lies on a crystallographic inversion centre.

(b)  $[\{SnR_2(OH)\}_2(\mu-O)]$  (2):  $C_{28}H_{78}O_3Si_8Sn_2$ , M = 925.0, orthorhombic, space group *Pbcn*, a = 15.524(4), b = 16.468(6), c = 19.258(6) Å, U = 4923 Å<sup>3</sup>, Z = 4,  $D_c = 1.25$  g cm<sup>-3</sup>, F(000) = 1928,  $\mu(Mo-K_{\alpha}) = 12.3$  cm<sup>-1</sup>. Of the 4812 unique reflections measured (for  $2 < \theta < 25^{\circ}$ ), 1886 with  $I > 3\sigma(I)$  were used in the refinement, giving R = 0.054,  $R_w = 0.056$ . The molecule lies on a crystallographic twofold rotation axis.

For both structures an empirical absorption correction was applied. Non-hydrogen atoms were refined anisotropically; hydrogen atoms were included at fixed calculated positions, but in (2) the hydroxy hydrogen atoms were omitted.

Atomic co-ordinates bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.



Figure 1. The molecular structure of  $[{SnR_2(\mu-O)}_2]$  (1). Selected bond lengths and angles are: Sn–O 1.94(2), Sn–O' 1.98(1), Sn–C(1) 1.97(3), Sn–C(8) 2.10(2) Å; O–Sn–O' 82.5(6), O–Sn–C(1) 113.3(7), O–Sn–C(8) 110.4(9), O'–Sn–C(1) 116.2(7), O'–Sn–C(8) 108.5(6), C(1)–Sn–C(8) 119.9(9)°.



Figure 2. The molecular structure of  $[\{SnR_2(OH)\}_2(\mu-O)]$  (2). Selected bond lengths and angles are: Sn–O(1) 1.956(4), Sn–O(2) 2.032(7), Sn–C(1) 2.108(10), Sn–C(2) 2.146(10) Å, O(1)–Sn–O(2) 100.7(3), O(1)–Sn–C(1) 111.9(3), O(1)–Sn–C(2) 103.9(3), O(2)–Sn–C(1) 103.5(3), O(2)–Sn–C(2) 115.1(3), C(1)–Sn–C(2) 120.2(4), Sn–O(1)–Sn' 125.0(5)°.

The colour of (1) must be due to an unusually small HOMO-LUMO separation. The low hydrocarbon-solubility cannot be due to close intermolecular contacts: there are none less than 6 Å to Sn.

The X-ray structure of  $[{SnR_2(OH)}_2(\mu-O)]$  (2) is illustrated in Figure 2. Because (i) the Sn–O( $\mu$ ) bond length is similar to that in cyclostannoxanes (Table 1), (ii) the Sn–O( $\mu$ )–Sn' angle is similar to that in cyclotristannoxanes

(Table 1), and (iii) the Sn–O(H) bond is significantly longer than Sn–O( $\mu$ ), it is likely that there is significant Sn–O( $\mu$ )  $\pi$ -bonding, or O–O-nonbonded interactions.<sup>11</sup> The relative disposition of the two hydroxy oxygen atoms, one pointing away from and the other into the Sn–O( $\mu$ )–Sn' plane, makes it unlikely that there is hydrogen bonding. Organotin hydroxides generally have a bridging –OH, as in [Sn( $\mu$ -OH)Ph<sub>3</sub>] $_{\infty}$ , Sn–O 2.197(5) Å.<sup>12</sup> A rare case of a compound having a terminal –OH is tris(tropolonato)tin hydroxide, Sn–O(H) 1.974(6) Å.<sup>13</sup>

We thank Mr. N. Sarjudeen for assistance in determining the X-ray structure of complex (1), and SERC and the Leverhulme Trust for support.

Received, 1st May 1990; Com. 0/01932A

## References

1 V. K. Belsky, N. N. Zemlyansky, I. V. Borisova, N. D. Kolosova, and I. P. Beletskaya, J. Organomet. Chem., 1983, 254, 189.

- 2 H. Puff, W. Schuh, R. Sievers, and R. Zimmer, Angew. Chem., Int. Ed. Engl., 1981, 20, 591.
- 3 H. Puff, W. Schuh, R. Sievers, W. Wald, and R. Zimmer, *J. Organomet. Chem.*, 1984, **260**, 271.
- 4 S. Masamune, I. R. Sita, and D. J. Williams, J. Am. Chem. Soc., 1983, 105, 630.
- 5 U. Weber, N. Pauls, W. Winter, and H. B. Stegmann, Z. Naturforsch., Teil B, 1982, 37, 1316.
- 6 H. Puff, R. Gattermeyer, R. Hundt, and R. Zimmer, Angew. Chem., Int. Ed. Engl., 1977, 16, 547.
- 7 P. Brown, M. F. Mahon, and K. C. Molloy, J. Chem. Soc., Chem. Commun., 1989, 1621.
- 8 A. Blecher and M. Dräger, Angew. Chem., Int. Ed. Engl., 1979, 18, 677.
- 9 M. J. Fink, K. J. Haller, R. West, and J. Michl, J. Am. Chem. Soc., 1984, 106, 822.
- 10 W. Schuh, Dissertation, Bonn, 1982, cited in ref. 3.
- 11 C. Glidewell, Inorg. Chim. Acta, 1975, 12, 219.
- 12 C. Glidewell and D. C. Liles, Acta Crystallogr., Sect. B, 1978, 34, 129.
- 13 J. J. Park, D. M. Collins, and J. L. Hoard, J. Am. Chem. Soc., 1970, 92, 3636.